

# BRIDGING LIFE & LIVER: UNDERSTANDING PEDIATRIC LIVER TRANSPLANTATION

SPEAKER

Dr Ravi Bhardwaj

CHAIRPERSONS

Dr Raghavender Singh, Dr Abhideep Chaudhary

**Dr. Ravi P. Bharadwaj**



**Senior Consultant**

**Pediatric gastroenterology and liver transplant**

**BLK-Max Superspeciality Hospital,  
New Delhi**

## Dr Raghvendra Singh



|                                |                                                                                                                                                                                                                         |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DESIGNATION</b>             | <b>Professor (Pediatrics)<br/>Incharge Pediatric Gastroenterology,<br/>Nutritional Rehabilitation Centre and<br/>GI Endoscopy Lab</b>                                                                                   |
| <b>CURRENT<br/>AFFILIATION</b> | Maulana Azad Medical College and<br>Lok Nayak Hospital, Delhi                                                                                                                                                           |
| <b>ACHIEVEMENTS</b>            | Fellow, Pediatric Gastroenterology<br>Hepatology and Nutrition (2023-24),<br>SickKids, University of Toronto, Canada<br><br>Treasurer 2025-26, Pediatric and<br>Adolescent Nutrition Society (IAP<br>Nutrition Chapter) |



## Dr Abhideep Chaudhary

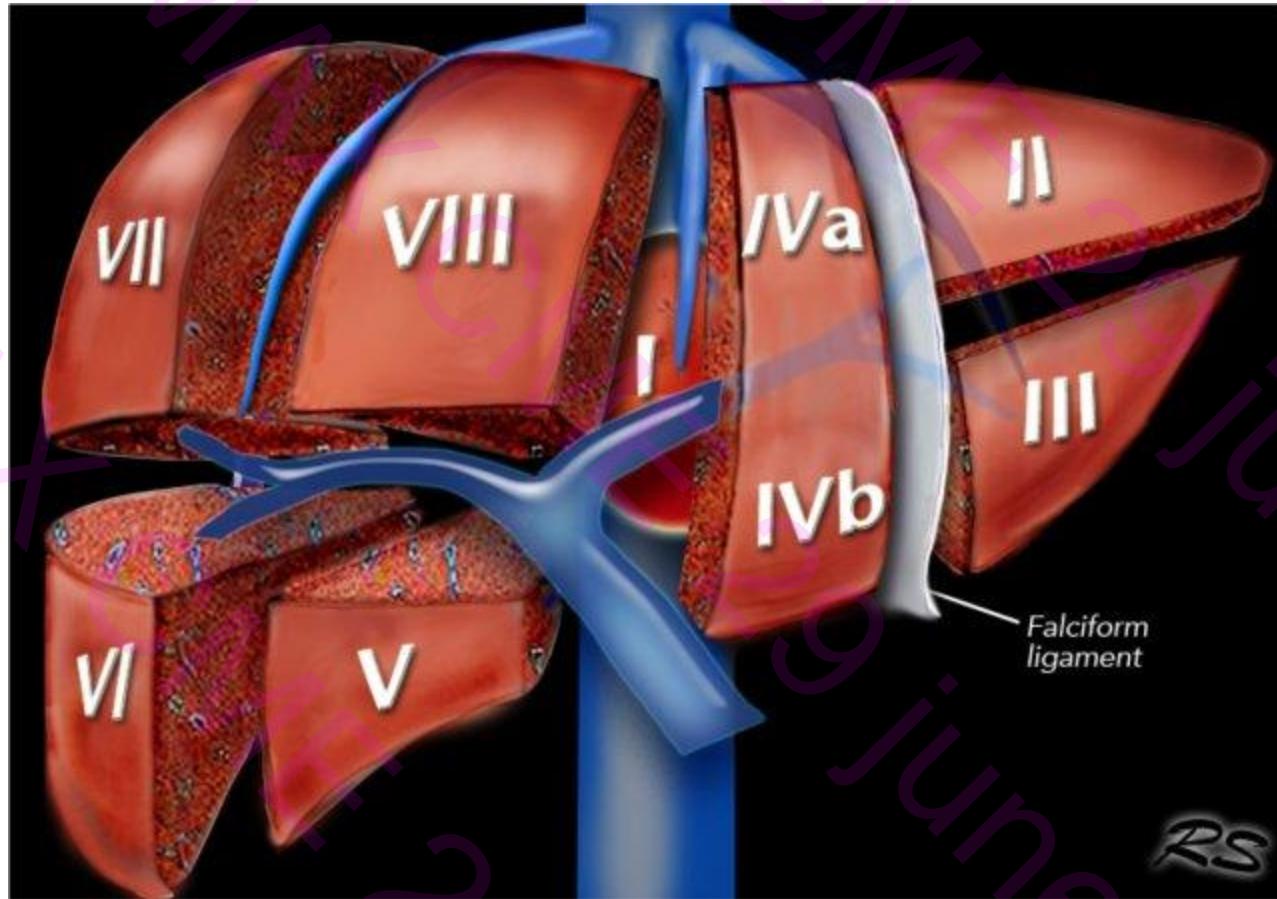
Vice chairman & HOD  
BLK Max Centre for HPB  
Surgery & Liver  
Transplantation

President LTSI –elect  
(Liver Transplant Society of  
India)

## Liver transplant in children

**Dr Abhideep Chaudhary**  
Vice chairman & HOD  
HPB Surgery and LT

**Dr Ravi Bharadwaj**  
Sr Consultant  
Pediatric gastroenterology


**Dr Raghvenra Singh**  
Professor (Pediatrics)  
Incharge Pediatric Gastroenterology  
MAMC

**Dr Praveen Kumar**  
Pediatric Gastroenterologist  
Professor & Head  
Kalawati Saran Children  
Hospital.

**Human liver transplantation - first attempted - 1963 - EHBA**

**Outcomes improved following the introduction of cyclosporine in 1980**

**The first liver transplant in children in India was performed in 1998 at Apollo Hospital Delhi**



For children – typically left lateral segment 2, 3 or lateral Seg 2,3,4

Chronic Cholestatic Disease 54.3%  
Biliary atresia 41.1%  
Alagille syndrome 2.9%  
Primary sclerosing cholangitis 2.7%  
TPN-induced cholestasis 1.8%  
Progressive intrahepatic cholestasis 1.5%  
Idiopathic cholestasis 1.1%  
Neonatal hepatitis 1.0%  
Biliary cirrhosis, other cholestatic diseases 2.2%  
Acute Liver Failure 13.8%  
Cirrhosis 6.7%  
Autoimmune hepatitis with cirrhosis 2.9%  
Neonatal hepatitis cirrhosis 0.5%  
Metabolic Disease 14.4%  
α1-Antitrypsin deficiency 3.0%  
Urea cycle defects 2.4%

Cystic fibrosis 1.6%  
Wilson's disease 1.2%  
Tyrosinemia 1.0%  
Primary hyperoxaluria 0.7%  
Crigler-Najjar syndrome 0.7%  
Glycogen storage disease 0.7%  
Neonatal hemochromatosis 0.5%  
Inborn error in bile acid metabolism 0.1%  
Primary Hepatic Malignancy 6.2%  
Hepatoblastoma 4.2%  
Other 2%  
Other 4.7%  
Congenital hepatic fibrosis 1%  
Budd-Chiari syndrome 0.4%  
Toxicity 0.7%

**A good liver donor is someone**

**Healthy,**

**Close relative of the recipient**

**Has a compatible blood type and body size**

## Criteria for live donation of a liver:

Must be in good physical and mental health

Must be between the ages of 18 and 60

Must have a body mass index (BMI) that is less than 32

Must have a compatible blood type with the recipient

Must be free from the following:

- Significant organ diseases (i.e., heart disease, kidney disease, etc.)
- Ongoing malignancy (cancer)
- Hepatitis
- Active or chronic infections
- Active substance abuse

Finally, the donation of any organ by a living person must be completely voluntary.

Donors should be free from any pressure or guilt associated with the donation and cannot be paid for their donation.

## Donor time line

**Admission -1 (1 day prior to LT)**

**OT time typically between 6-10 hrs**

**On table extubation**

**ICU stay for around 2 days**

**Discharge on 7<sup>th</sup> day**

**Can resume normal usual activites by 1 month post OT**

**Can resume strenuous activities typically after 3 months**

**Approx mortality 1 in 2500 (No donor death at our centre)**

**Primary Liver Disease That leads to Hepatic Insufficiency**

**Acute Liver Failure**

**Liver Transplantation as Primary Therapy for Inborn Errors of Metabolism**

**Secondary Liver Disease**

**Primary Hepatic Malignancy**

Once the opportunity of KPE is missed > 100 days

**Primary failure of the Kasai**

At 3 months or more post Kasai

TB >6 mg/dl : prompt referral for LT evaluation

TB 2-6 mg/dL : LT evaluation should be considered

**Refractory growth failure**

**Recurrent cholangitis**

**Complications of PHTN (POPH, HPS, ascites, recurrent bleeding)**

**Progressive liver dysfunction**

*Squires RH et al, Hepatology. 2014;60(1):362.*

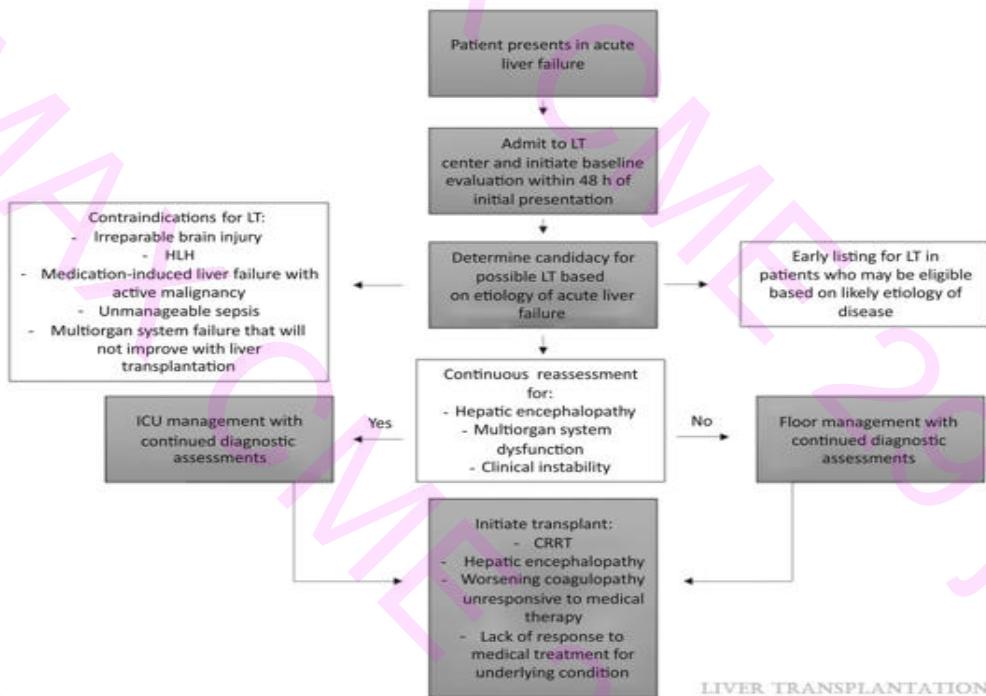
*Jiang CB et al, Eur J Pediatr. 2003;162(9):603.*

*Barshes NR et al, Liver Transpl. 2005;11(10):1193.*

Acute onset – hepatic failure within eight weeks of onset of clinical liver disease  
no previous evidence of chronic liver disease

Biochemical evidence of acute liver injury (one or both):

Hepatocellular injury – AST or ALT)  $>100$  IU/L (unless explained by myopathy)


Biliary dysfunction – TB  $>5$  mg/dL , DB  $>2$  mg/dL and/or GGT  $>100$

Coagulopathy – Persists after inj vitamin k administration

PT $\geq$ 15 seconds or international normalized ratio (INR)  $\geq 1.5$  with evidence of hepatic encephalopathy

PT  $\geq$ 20 seconds or INR  $\geq 2.0$ , with or without encephalopathy.

FIGURE 1



[Pediatric acute liver failure: Reexamining key clinical features, current management, and research prospects](#)

Ascher Bartlett, Johanna M.; Yanni, George; Kwon, Yong; Emamalilee, Juliet

Liver Transplantation 28(11):1776-1784, November 2022.

doi: 10.1002/lt.26500

Proposed approach to managing patients with PALF.

Of note, the degree of coagulopathy has not been shown to correlate with hepatic encephalopathy.

The PALFSG has demonstrated that 25% of patients who had Grade 3 or 4 hepatic encephalopathy and required intensive care had mild coagulopathy with INR <2.0, yet patients with this degree of encephalopathy (Grade 3–4) also demonstrated the highest rates of mortality.

All patients with acute liver failure require close monitoring and daily assessment of overall mental status for this reason.

The Liver Injury Unit score has been developed specifically for PALF and includes factors for peak total bilirubin, PT or INR, and ammonia

Sensitivity and specificity were 74 and 80 percent

LIU score <209- low risk

LIU score >370- high risk

NWI (New Wilson Index >11=LT)

PELD

PELD Score =  $0.480 \times \ln(\text{bilirubin in mg/dL}) + 1.857 \times \ln(\text{INR}) - 0.687 \times \ln(\text{albumin in g/dL}) + 0.436$  if the patient is <1 year old + 0.667 if there growth failure

LIU score =  $3.507 \times \text{peak total bilirubin (mg/dL)} + 45.51 \times \text{peak INR} + 0.254 \times \text{peak ammonia (\mu mol/L)}$

## Poor prognostic indicators for PALF include

Younger than 1 year at the time of presentation

Presence of Grade 4 encephalopathy

The Liver Injury Unit (LIU) score; is able to predict death or LT by 4 weeks of patient presentation with an area under the curve of 88.5%–90.5%

Use in the clinical setting is limited by a reliance on peak laboratory values

The King's College model incorporates the presence of hepatic encephalopathy, which is an unreliable feature in pediatrics

## Poor prognostic indicators for PALF include

**Patients most likely to be listed**

higher INR (median, 3.0), total bilirubin (median, 15 mg/dl), lactate (median, 2.8 mmol/L), ammonia (63  $\mu$ mol/L), and lower liver enzymes (alanine aminotransferase, 1635 IU/L), boys, inotrope, MV, Indeterminate PALF

**Resolution of disease without transplant was more likely in patients without encephalopathy**

**Negative impact of young age on PALF outcomes**

*Bhatt H et al, Curr Pediatr Rep. 2018;6:246–57.*

*Jain V, Dhawan A.. Liver Transpl. 2016;22:1418–30.*

*Squires JE et al. Hepatology. 2018;68:2338–47.*

## Extracorporeal liver support systems

Artificial liver support, including the membrane-adsorbent recirculating system and plasma exchange (with or without hemodialysis), and bioartificial liver support

## Plasmapheresis or plasma exchange

**Special mention- Liver transplantation can benefit children with inborn errors of metabolism that do not injure the liver, the principal goal of treatment being to correct the metabolic error**

**Urea cycle defects**

**Crigler-Najjar syndrome,**

**Homozygous familial hypercholesterolemia**

**Primary hyperoxaluria**

**The decision of whether to perform liver transplantation depends on knowing**  
**it will correct the metabolic defect**  
**there is no effective alternative therapy,**  
**patient has not experienced irreversible complications.**

The decision-making process is different for urea cycle defects, which result in hyperammonemia and brain damage.

Despite advances in medical management, severe defects such as ornithine transcarbamylase (OTC) deficiency in males still have a very poor outcome.

OTC deficiency is an X-linked disease.

Boys with OTC deficiency should be considered for transplantation immediately upon making the diagnosis

Successful transplantation corrects the metabolic defect but cannot undo preexisting brain damage.



**Cystic fibrosis and biliary cirrhosis**

**Sclerosing cholangitis secondary to Langerhans cell histiocytosis**

## Hepatoblastoma:

“Rescue transplants” carry a much worse prognosis than tumors treated by primary transplantation

Liver transplants that are done after a tumor has recurred in the liver carry a nonrecurrence rate of 20% to 30% in comparison to rates of greater than 90% for primary transplants.

Transplantation should be considered only if complete resection is not possible

Hepatocellular carcinoma is extremely rare in children outside the context of

Metabolic liver disease  
Tyrosinemia

**Assessing the etiology and need**

**Nutritional optimization (Vit A, D, E, K, MCT Oil, Multivitamins and Ca)**

**Management of complications- PHT , Ascites, HPS, Sepsis, Infection**

**Donor and recipient work up**

**Clearances**

**Typically takes around 1-2 wk depending on urgency**

**Admitted on -1 (1 day prior to LT)**

“Fast-track” approach entailing extubation in the operating room

ICU stay of 3 to 5 days

Oral feedings around 2<sup>nd</sup> -3<sup>rd</sup> day

Median length of hospital stay - about 15 to 20 days

Laboratory test results are checked on a weekly basis after discharge

Medications are tapered according to center protocol, with most patients on calcineurin monotherapy by 1 year after transplantation

Lifelong immunosuppression is the standard of care at most centers, but this might change for select groups of recipients that achieve operational tolerance with stable histological characteristics and graft function

Late complications such as biliary strictures, vascular occlusions

Live vaccines are prohibited until the patient is on monotherapy for at least 6 months

**Secondary organ failure**

**Severe pulmonary hypertension**

**Severe portopulmonary hypertension**

**Presence of disease that is expected to recur after therapy**

**Metastatic carcinoma**

The 5-, 10-, 15-, 20-, and 25-year survival rates for pediatric liver transplant recipients are 85.0%, 84.7%, 84.2%, and 80.8%, respectively

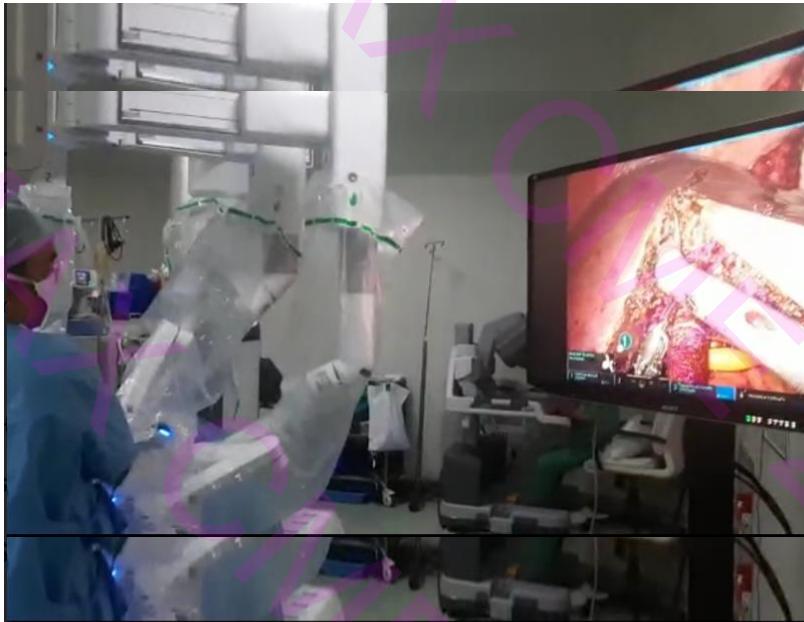
The 5-, 10-, 15-, 20-, and 25-year graft survival rates for pediatric liver transplant recipients are 81.6%, 77.6%, 76.3%, 75.0%, and 75.0%, respectively

The projected 20-year survival rate for pediatric liver transplant recipients transplanted between 2007 and 2018 is 84.0%, and the projected 30-year survival rate is 80.1%.

|         | Survival | Graft survival | Projected survival |
|---------|----------|----------------|--------------------|
| 5 year  | 80-85    | 78-81.6        |                    |
| 10 year | 79-84.7  | 75-77.6        |                    |
| 15 year | 79-84.2  | 75-76.3        |                    |
| 20 year | 75-81    | 73-75          | 84                 |
| 25 year | 73-80.8  | 71-75          |                    |

Multiple single centre studies

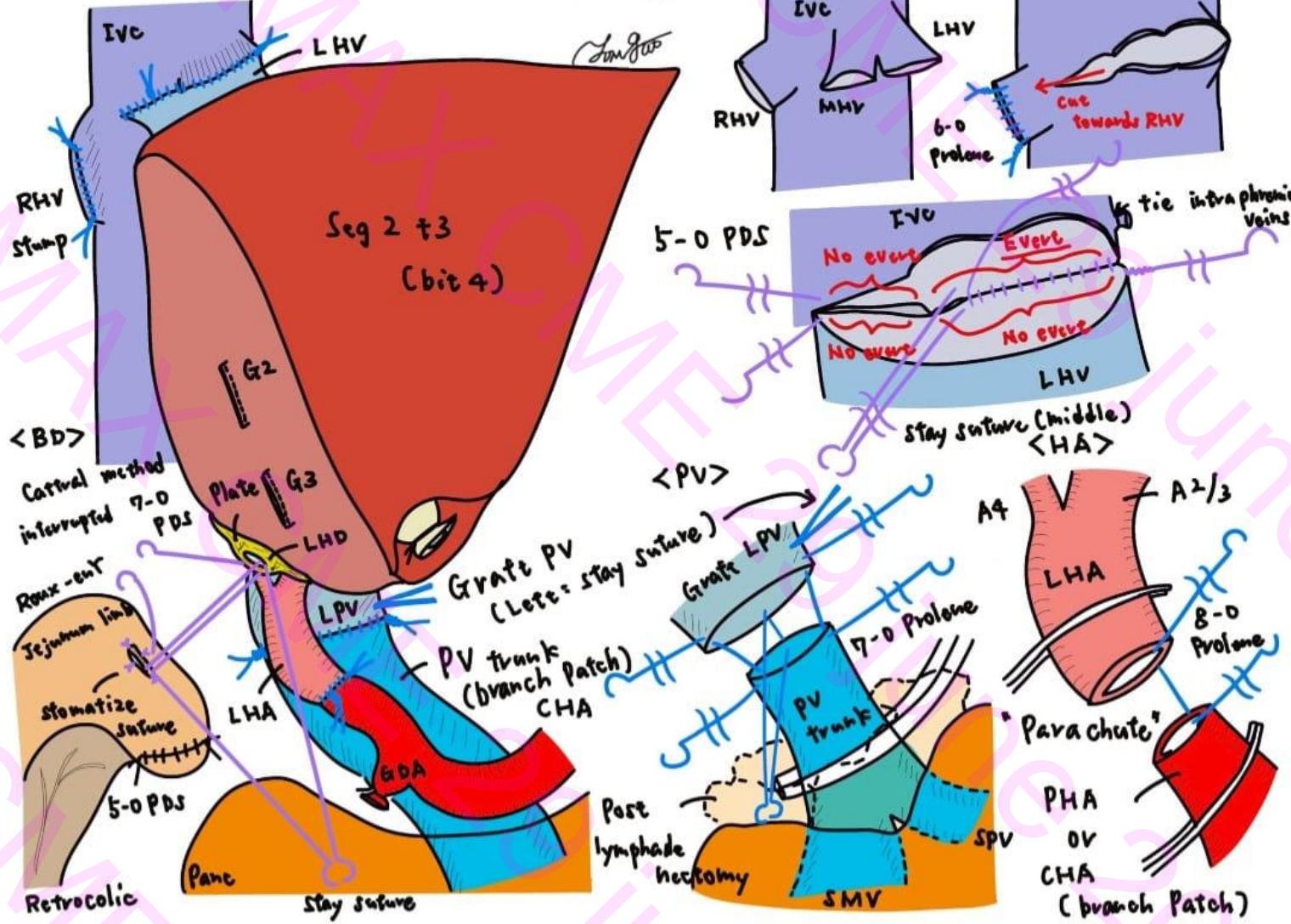
| 2019         | 1         |
|--------------|-----------|
| 2020         | 1         |
| 2021         | 6         |
| 2022         | 12        |
| 2023         | 17        |
| 2024         | 14        |
| 2025         | 7         |
| <b>total</b> | <b>58</b> |


| male   | 33 |
|--------|----|
| female | 25 |

| Age   | N. |
|-------|----|
| <1 yr | 13 |
| 1-5   | 14 |
| >5    | 31 |



| EHBA (pre and post kasai) | 17 |
|---------------------------|----|
| PFIC                      | 10 |
| Wilson                    | 5  |
| AIH                       | 8  |
| BCS                       | 2  |
| CDC                       | 1  |
| GSD/Metabolic             | 3  |
| ALF                       | 5  |
| Hepatoblastoma            | 2  |
| Cryptogenic               | 5  |


## ROBOTIC DONOR LEFT LATERAL HEPATECTOMY



|                            |           |
|----------------------------|-----------|
| <b>Total robotic Donor</b> | <b>26</b> |
| Robot assisted             | 17        |
| Complete Robotic           | 9         |
| <b>Left Lateral graft</b>  | <b>3</b>  |

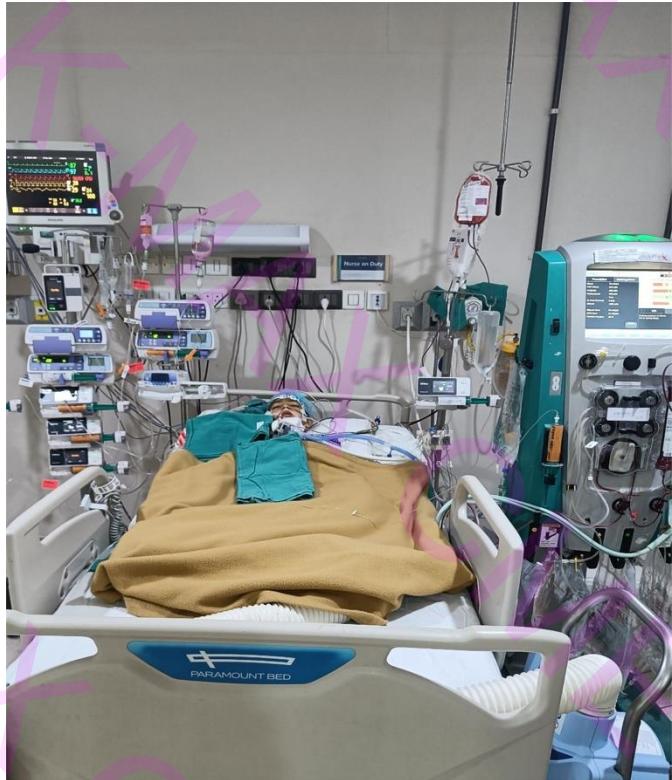


## < Pediatric LDLT with Left lateral lobe >



# Left lateral segment hyper-reduction technique




Child wt. <5kg

Graft to recipient weight ratio >4 %





MAX CME 29 june 2024



Pre LT



Day 3 –post LT



Day 10 –post LT

# Surviving the odds!





## From yellow to white



# Growth/Height



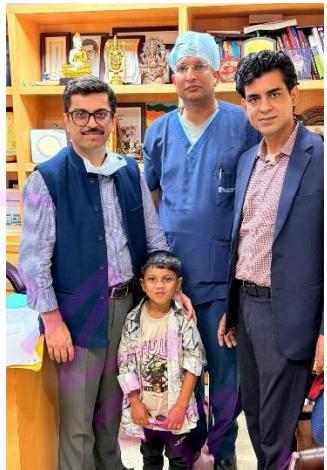
Youngest at 4 months



I am no more an infant



Sometimes you get more than you ask




Decompen  
ted liver  
disease ,  
Wilson and  
mild  
neurological  
impairment

# Story of trust from being scared to sporty



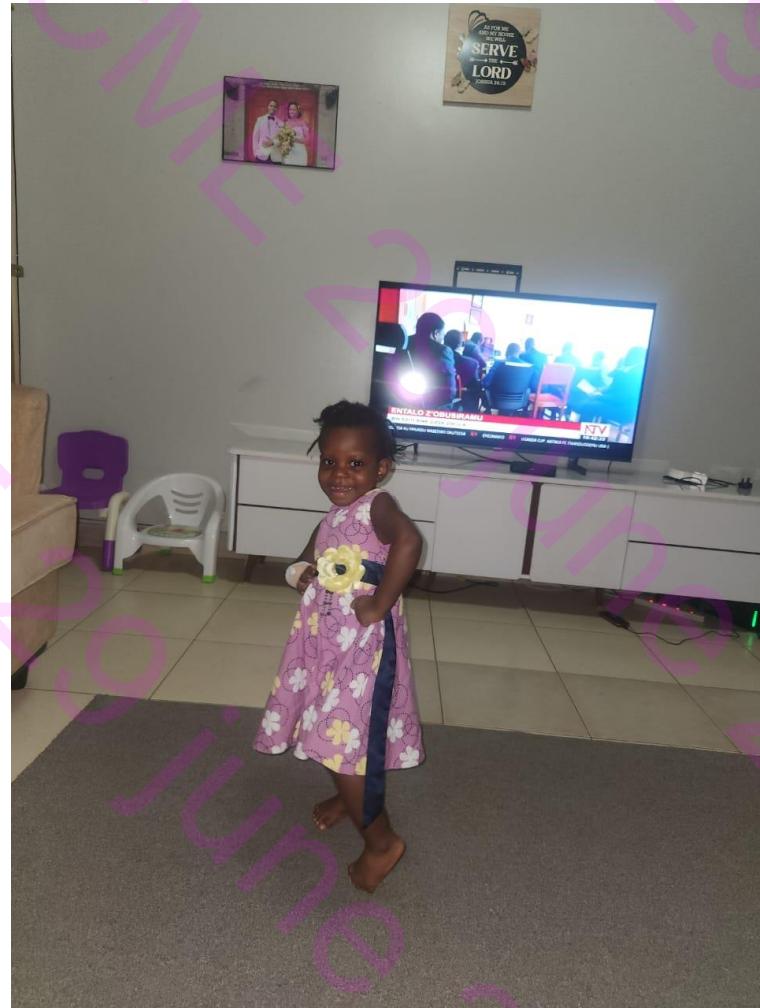






I don't need a transplant

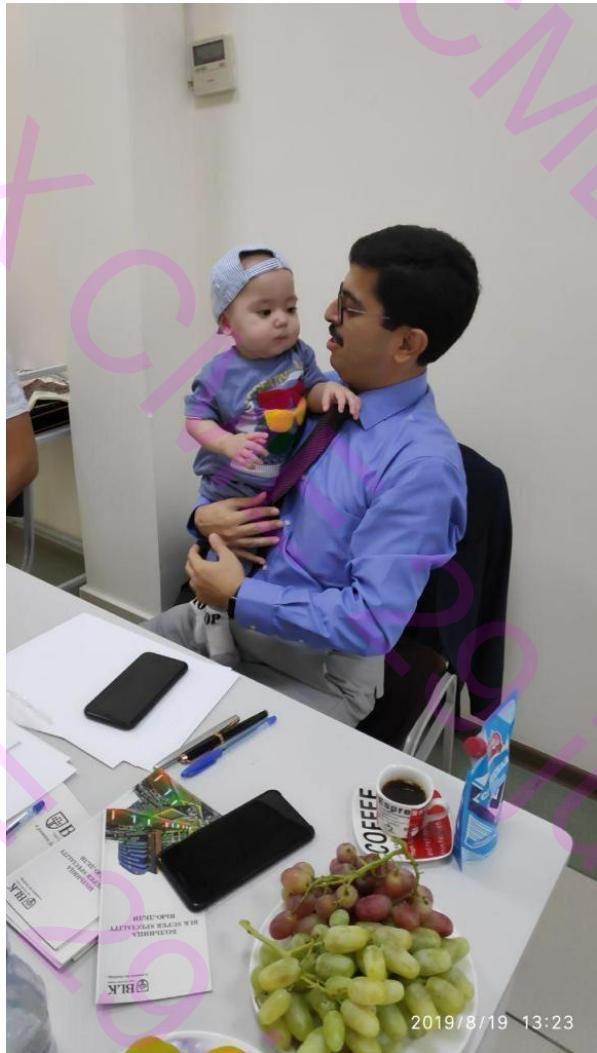



And I don't  
need a wheel  
chair

BLK-MAX CME 29 June 2021






## Difficulty in standing to learning Indian dance now



She is now learning to walk



Now you know who calls the shots here



2019/8/19 13:23

**Thank you**